Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
نویسندگان
چکیده
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
منابع مشابه
Double Weight-Based SAR and Infrared Sensor Fusion for Automatic Ground Target Recognition with Deep Learning
This paper presents a novel double weight-based synthetic aperture radar (SAR) and infrared (IR) sensor fusion method (DW-SIF) for automatic ground target recognition (ATR). IR-based ATR can provide accurate recognition because of its high image resolution but it is affected by the weather conditions. On the other hand, SAR-based ATR shows a low recognition rate due to the noisy low resolution ...
متن کاملGround Target Detection, Classification and Sensor Fusion in Distributed Fiber Seismic Sensor Network
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. ...
متن کاملTarget Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters
Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...
متن کاملData Fusion for Identity Estimation and Tracking of Centroid using Imaging Sensor Data
Two aspects involved in automatic target recognition namely, (i) Location and identity estimation (LIE) of a target by fusing infrared (IR) and acoustic sensor data, and (ii) centroid tracking for target state estimation using IR sensor data are discussed in this paper. The LIE has been achieved using a combination of Bayesian fusion and one of the three search algorithms namely, metropolis has...
متن کاملPotential Payoff of Fusion Between HSI and Other Sensors
2 Telephone (781) 981-2920; Fax (781) 981-7271; e-mail [email protected] Abstract In this paper, two examples of sensor fusion are demonstrated. The first is hyperspectral imaging (HSI) with Synthetic Aperture Radar (SAR) and the other is HSI with high-resolution panchromatic imaging (HPI). HSI and SAR fusion exploits different phenomenologies from distinctly different sensors. HSI and HPI fu...
متن کامل